22 research outputs found

    Strigolactone GR24 upregulates target genes of the cytoprotective transcription factor Nrf2 in skeletal muscle [version 2; referees: 2 approved]

    Get PDF
    GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress

    Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia

    Get PDF
    Abstract Aims/hypothesis The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. Methods A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA 1c ≄6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Results Participants on statin treatment (N=2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment ( p<0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Conclusions/interpretation Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion

    Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes

    Get PDF
    The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients’ iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient’s cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients

    Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes

    Get PDF
    The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients’ iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient’s cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients

    Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia

    No full text
    Abstract Aims/hypothesis The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. Methods A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA 1c ≄6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Results Participants on statin treatment (N=2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment ( p<0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Conclusions/interpretation Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion

    Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells.

    No full text
    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 ÎČ-cells by 59% and 79% (p<0.01) at glucose concentration of 5.5 mmol/l and 16.7 mmol/l, respectively, compared to control, whereas pravastatin did not impair insulin secretion. Simvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes

    Functional Variant in the GCKR Gene Affects Lactate Levels Differentially in the Fasting State and During Hyperglycemia

    No full text
    Abstract The rs780094 single nucleotide polymorphism (SNP; C/T) of glucokinase regulatory protein gene (GCKR) is a regulatory genetic variant that has been associated with lactate levels in the fasting state. However, the association of this locus with lactate during hyperglycemia, and the mechanisms underlying these associations remain unknown. We investigated the association of rs780094 with lactate levels in a frequently sampled oral glucose tolerance test in humans and evaluated the effect of increasing GCKR expression on lactate production in liver cells. The C allele of rs780094 was associated with lower lactate levels in fasting but increased lactate level during hyperglycemia independently of insulin levels. Increased expression of GKRP induced higher lactate level in HepG2 cells and in human primary hepatocytes (HPH) upon glucose stimulation by increasing the amount of GCK. Glucagon induced the expression of GCKR in HepG2 and HPH cells. Our results suggest that the association of rs780094 with lactate levels may involve differential GCKR expression between the carriers of the C and T alleles
    corecore